Book Toankho

Sách hay - Sách đẹp

NGUYÊN LÍ DIRICHLET CHỨNG MINH BẤT ĐẲNG THỨC

Mở đầu về nguyên lí Dirichlet.Trong toán học, nguyên lý chuồng bồ câu, nguyên lý hộp hay nguyên lý ngăn kéo Dirichlet có nội dung là nếu như một số lượng n vật thể được đặt vào m chuồng bồ câu, với điều kiện n>m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể. Định lý này được minh họa trong thực tế bằng một số câu nói như “trong 3 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái.” Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện “không thể ngờ tới”, tỉ như 2 người có cùng một số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được một số lượng cực lớn thư rác.

Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi “nguyên lý ngăn kéo” (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là “nguyên lý ngăn kéo Dirichlet” hay đôi khi gọi gọn là “nguyên lý Dirichlet” (tên gọi gọn này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên “ngăn kéo” chứ không phải “chuồng bồ câu”.
Nguyên lý ngăn kéo Dirichlet dược ứng dụng trực tiếp nhất cho các tập hợp hữu hạn (hộp, ngăn kéo, chuồng bồ câu), nhưng nó cũng có thể được áp dụng đối với các tập hợp vô hạn không thể được đặt vào song ánh. Cụ thể trong trường hợp này nguyên lý ngăn kéo có nội dung là: “không tồn tại một đơn ánh trên những tập hợp hữu hạn mà codomain của nó nhỏ hơn tập xác định của nó”. Một số định lý của toán học như bổ đề Siegel được xây dựng trên nguyên lý này.
Nguồn: Wikipedia.
Áp dụng trong bất đẳng thức.
Nguyên lí Dirichlet có rất nhiều ứng dụng trong Toán Học, điển hình là bất đẳng thức. Chúng thường được áp dụng để giải một số bài toán bất đẳng thức không thuần nhất. Hôm nay tôi sẽ đưa ra một số ví dụ để các bạn hiểu hơn về vấn đề này. Trong 3 số a,b,c luôn có 2 số nằm cùng phía với số m bất kỳ (Hay lớn hơn bằng m hoặc bé hơn bằng m). Tham khảo thêm dưới đây. Nguồn Nguyễn Phúc Tăng – Lê Việt Hưng

DOWNLOAD:
Link 1: Click Here
Link 2: Click Here

Leave a Reply

Your email address will not be published. Required fields are marked *

loading...
Loading...